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 ABSTRACT: The paper presents the modal parameters investigation of the simplex tensegrity prism (unit with three compressed bars and 

nine tensioned cables). An emphasis is put on the pre-stress level influence on the natural frequencies and vibration modes (two different 

levels are analysed). The form-finding procedure and the force density relations in elements are developed theoretically. A physical model 

of the prism is described and investigated experimentally using impact testing hammer and three-axial accelerometers. The recorded data 

for each pre-stress level is composed of nine setups, in which one impulse signal and nine acceleration signals are analysed. The results 

show first five natural frequencies, vibration modes and damping ratios, although only first two natural frequencies clearly rise with the 

increased prestress level. In addition, it is shown that recording only one second of acceleration and impulse signals is sufficient to gather 

all the needed information which can be further utilized for the structural health monitoring purposes.   
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1. INTRODUCTION 

Tensegrity systems are composed of compressed bars and elastic 

tensioned cables connected in nodes in such a way that stability of the 

system under external loads applied at the nodes can only be achieved 

by the pre-stress of the cables. This pre-stress state often called the self-

stress state is an initial internal equilibrium state and to a high degree 

determines the stiffness and stability to the structure. Since the members 

of tensegrity structures are commonly seen as pin-jointed elements, they 

can be regarded as a special class of spatial truss structures where the 

members are assembled in a self-equilibrated system. The well-known 

example of such a structure is the Snelson’s tower - a column composed 

of several units attached to each other – so called the simplex units 

(Ref.1) (Fig. 1). The three bars simplex with triangular bases shown in 

Fig. 1b is a fundamental three-dimensional unit often called a regular 

minimal tensegrity T3 prism, (Ref.2). It contains three bars that connect 

vertices of the two equilateral horizontal triangles. The top and bottom 

triangles are formed by three cables. The remaining three cables also 

connect the vertices of the top triangle to the vertices of the bottom 

triangle. The unit is constructed as a spatial truss of twelve members 

from three compressed bars and nine tensioned cables. If the upper 

triangle is rotated counter-clockwise with respect to the bottom triangle 

by an angle of 5/6π about the vertical axis of the simplex it is then often 

called a left-handed. When the T3 unit is right-handed the upper triangle 

is rotated clockwise by the same angle (Figs 1b, 2). 

Tensegrities structures can experience large displacements and hence 

their analysis should include geometrical nonlinearity with response to 

loading dependent on the pre-stress level. A comprehensive survey on 

simplex static response to axial loading was done in the range of 

numerical analysis in (Ref 3).  The numerical study, which was further 

proved by experiments in (Ref.4), showed that the simplex prisms may 

present extreme stiffening-type response or extreme softening response, 

which is a matter of aspect ratio of the structure, the magnitude of the 

applied prestress and material properties of the members. Based on 

nonlinear static analyses some design examples of the simplex units 

with cables made of innovative materials were also presented in (Refs. 

5,6) together with an incremental iterative procedure given a Matlab 

code. However, after a designed pre- 

a) b) 

Fig. 1 a) the Snelson’s sculpture  (Ref. 1), b)  the left-handed simplex 

(top) and the right-handed simplex (bottom) 
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stressing is introduced by a lengthening or shortening of some members 

from their unstrained lengths, the response can often be linearized, as is 

the common case in simulation approaches. Having a non-linear static 

equilibrium state for a chosen internal pre-stress level, the small 

vibrations of the structure around the considered equilibrium can be 

analyzed with its modal characteristics, natural frequencies and related 

eigenvectors. Identified modal characteristics can be used for the 

calibration and validation of dynamic structural models. The first 

natural frequency in tensegrity structures is very important. It marks the 

stiffness of the structure and is most susceptible to changes, when this 

stiffness changes – due to the pre-stress decrease, cross-string slack or 

bar buckling. That is why it is utilized in vibrational health monitoring 

or structural control. 

One of the first static and dynamic test of a tensegrity simplex was 

performed by (Ref.7) in 1987, where a response to axial loading and 

forces in elements were studied, while dynamic behaviour in terms of 

first six eigenfrequencies were obtained below the level of 100Hz. In 

(Ref.8) a numerical investigation on the pre-stress influence on the 

eigenfrequencies of tensegrity 2D structures was studied.  It was shown 

that for a certain tensegrity structure, increasing the level of pre-stress 

may cause the eigenfrequencies to rise or fall. S. Amouri (Ref.9) studied 

a dynamic response of a actuator controlled tensegrity model created in 

the Tensarch project (Ref.10). The authors developed a control strategy 

for attenuating first vibration modes in the studied category of 

structures. A compressive study on a five module tensegrity structure 

was given in (Ref.11) – the numerical and experimental results on 

dynamic behaviour and, additionally, vibration control by small 

movements of active struts. The influence of the pre-stress on the axial 

stiffness and response of the simplex, as well as some other tensegrity 

models, was recently investigated numerically in (Ref.12), where also a 

usability of the tensegrity concept in road bridges was studied.  

This paper presents the modal parameters of the simplex unit that were 

obtained through an experimental study on an own physical model. 

Recorded data in impact hammer tests was matched with one of the 

system identification methods and afterwards modal parameters were 

extracted using an appropriate Matlab toolbox for experimental and 

operational modal analysis (Ref.13). The paper is organized as follows: 

section 2 consists of the mathematical explanation of self-stress states in 

the analysed simplex prism, section 3 includes experimental modal 

analysis with deep explanation of the construction of the physical model 

and finally, section 4 is enclosing the paper with results and 

conclusions.   

2. REFERENCE CONFIGURATION AND PRE-STRESS STATE

The equilibrium equations of the right-handed simplex can be written 

for the top nodes 
4 5,P P  and 

6P  in a linearized vector form as (Fig. 2) 

41 43 45 46 4

51 52 54 56 5

62 63 64 65 6

+ + + =


+ + + =
 + + + = 

N N N N F

N N N N F

N N N N F

, (1) 

where the vectors 
iF  denote the external nodal forces in the i-node. 

The number of a non-trivial solution to the equilibrium Eqn (1) when 

=F 0  indicates the number of the self-stress states. It also represents 

the number of pre-stressing devices which are needed to establish the 

compatible self-stress state in the tensegrity structure that ensures 

tension in cables and compression in bars.  

Fig. 2 The right-handed simplex with notations and a coordinate system 

The force vector of the arbitrary member
i kP P−  in Eqn (1) can be 

calculated as
ki ki k iN P P=N , where

kiN is a scalar of force magnitude and

k iP P is a versor calculated as /k i k i kiP P P P L= , where 
kiL  is the member 

length equal to norm of the k iP P vector. Introducing force densities as  

/ki ki kit N L=  the vector 
kiN  is /ki ki ki k iN L P P= N , where the vector 

k iP P  contains the components in terms of nodes coordinates 

 ( ), ( ), ( )i k i k i kX X Y Y Z Z− − −  of the initial node 
kP  and the end 

node 
iP  in the Cartesian coordinate system {X, Y, Z} . 

In the coordinate system, which has the origin at the center of mass of 

the bottom base triangle, the coordinates of the nodes  i i i iP X Y Z

are identified as 

1 2 3

4

6

{ 0 0}, { 2 3 2 0}, { 2 3 2 0},

{ cos sin }, { cos( 2 3) sin( 2 3) },

{ cos( 4 3) sin( 4 3) },

P r P r r P r r

P r r h P r r h

P r r h

     

   

− − −

+

+ +

  (2) 

where the radius is 3r L= . 

Three variables , andL h can describe the initial geometry of the unit 

with a vertical axis and two horizontal equilateral triangles. The height 

h  denotes the distance separating the two horizontal triangles, L is the 

side length of the equilateral triangles. The horizontal triangles can be 

rotated with the respect to each other by the angle of twist  .  

Based on the Eqn (1) with the vector of the force densities (Fig. 2) 
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43 41 45 51 52 46 62 63 56{ , , , , , , , , }t t t t t t t t t (3) 

the equilibrium matrix on the left side of Eqn (1) has the form presented 

in Eqn (4) along with a row numbering scheme to be equivalent to 

ordering of the measurement displacements 

4 4 4 5 5 5 6 6 6{ , , , , , , , , }X Y Z X Y Z X Y Zu u u u u u u u u . (5) 

Hence, the simplex unit is treated as the structure of the nine degrees of 

freedom, i.e. nine displacements of the top nodes. 

The square equilibrium matrix (4) is rank-deficient for 5 / 6 = − . 

The null-space of the matrix gives the one state of self-stress, ns , in 

terms of an arbitrary constant, the force density t: 

{ 3, 3, , 3, 3, , 3, 3, }t t t t t t t t t= − − −ns .      (6) 

As one can see from (6), it is reasonable to assume the following self-

stress state for the unloaded unit without the supports: 

43 51 62

45 46 56 12 13 23

41 52 63

3

3

t t t t

t t t t t t t

t t t t

= = =

= = = = = =

= = = −

. (7) 

The detailed initial geometry of the simplex unit used in the tests is 

given in Tab.1 together with the assumed self-stress.  

Table 1. Geometry of the simplex unit used in the tests ( 5 / 6 = − ) 

Self-stress state 

41t (bars) 45t (base cables) 43t (cross cables) 

-1 1 / 3 1 

L41 [m] L45 [m] L43 [m] 

0.9378 0.4872 0.7781 

Node 
Coordinates [m] 

Node and member numbers 
X Y Z 

1 0.281 0 0 Base cables 
Cross 

cables 

2 -0.141 0.243 0 1 1-2 4 4-5 10 1-5 

3 -0.141 -0.243 0 2 2-3 5 5-6 11 2-6 

4 -0.243 -0.141 0.764 3 3-4 6 4-6 12 3-4 

5 0.243 -0.141 0.764 Bars 

6 0 0.281 0.764 7 1-4 8 2-5 9 3-6 

It is worth noting that three unknown force densities are needed if 

during the deformation of the simplex unit the top and bottom triangles 

remain parallel to each other. This may happen if the unit is under 

uniform axial loading. 

3. VIBRATION EXPERIMENTS

3.1. Small free vibrations of the tensegrity structure 

The small free vibrations of the tensegrity structure around the non-

linear equilibrium state with the chosen pre-stress level can be obtained 

from a linearized eigenproblem 

2

T k k k− =K φ Mφ 0 , (8) 

where TK is the tangent stiffness matrix and M is the mass matrix of 

the structure. 

The spectral decomposition of the matrix 1

T

−
M K yields the natural 

frequencies and corresponding mode shapes of the tensegrity structure. 

For the considered equilibrium state with (n) active degrees of freedom 

the spectral decomposition of the generalized eigenproblem (8) gives (n) 

the frequencies
k 1 2( ... )n    and the related eigenvectors 

kφ . 

The matrices 
TK and M are usually assembled for the structure from 

the element matrices
Tk and m given in the local coordinates according 

to the known algorithm of the Finite Element Method. The tangent 

element stiffness matrix 
Tk  is decomposed into an element elastic 

stiffness 
Ek  and a geometric stiffness matric 

Gk  according to 

T E G= +k k k , (9) 

where  the matrix 
Gk  is dependent on the pre-stress level. 

In general, the elastic and geometric stiffness matrices are evaluated 

while the structure is in equilibrium expressed by displacement 

coordinates for all nodes. This equilibrium should be obtained 

iteratively due to geometric nonlinearity, also for the pre-stress level 

without external loads. 

It is worth noting that the axial response can only be found with the 

truss formulation without bending moments which can appear during 

transversal vibrations. The transversal modes of vibration can be the 

most visible modes during an environmental excitation. The chosen 

finite element must be able to capture the bending behavior with a 

stiffness affected by the current axial force, even if the bending stiffness 

of tensioned members is low and affects the structure response to a very 

low degree.  

3.2. Pre-stress setting of the experimental model 

The experiments described in this paper were conducted on the full-

scale simplex specially made for this study. The model with mounted 

three piezoelectric sensors on its top is shown in Fig. 3. It is made of 

three steel bars of 20 [mm] the nominal diameter with the yield and 

failure strengths of 640 and 800 [MPa], respectively. The circular bars  

Fig. 3 The simplex model with three sensors on the top nodes 

have been threaded to the M20 nominal thread on the length of 150 

[mm] on both ends providing connection points to move in order to 

execute the pre-stress. Two types of polyamide lines are used for the 

cables: a writhed, three strand line with 6 [mm] diameter for the cross 

cables and a braided line with core and a diameter of 4 [mm] for the 

others. The failure parameters of the lines are presented in Tab. 2 as 

stated by the manufacturer. Each bar gets through the centre of the node 

plate with three openings. The opening are made for snap hooks 

enabling to mount the lines with thimbles. The plate is 6 [mm] thick and 

made of AISI  304 (EN 1.4301) stainless steel.  

Table 2. Failure parameters of the lines provided by the manufacturer 

Failure load 

(6 mm) 

[N] 

Failure strain 

(6 mm) 

[%] 

Failure load 

 (4 mm) 

[N] 

Failure strain 

(4 mm) 

[N] 

7400 43 3100 unspecified 
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The mechanical parameters of the lines had to be checked before the 

assembly to the model because the lines were plaited into the thimble in 

different ways (supposed local weakening of the material) and had 

different types of rope strand. It is important to emphasise, that the 

stranded rope has different mechanical properties than the material from 

which it is tangled (that is why the Youngs modulus of the lines made 

with different tangles is different that the Youngs modulus of the 

polyamide material itself). The tension tests of the plaited lines were 

conducted on a universal testing machine of 10 [kN] nominal force. 

Eight specimens, four of each diameter were tested with a speed of 10 

[mm/min] up to the failure (Fig. 4). The Young’s modulus for the cross 

cables was calculated as a secant between the two points corresponding 

to the strain values between 2 and 4 [%], as the cables in the pre-stress 

stages were working in that range and, consequently, the modulus for 

the base cables was calculated as a secant between 0.6 and 1.2 [%]. The 

results are presented in Tab. 3 and in Fig. 5. 

Fig. 4 The Force-displacement diagrams of polyamide lines 

Table 3. Polyamide lines parameters after plaiting into the thimble 

Failure load 

[N] 

Tension strength 

[MPa] 

Failure strain 

[%] 

Youngs modulus 

[MPa] 

6 mm diameter 

4478.7±469.9 158.4±16.6 43.8±3 121.4±17.7 

4 mm diameter 

3568.3±180.7 284±14.4 34.1±1.2 327.8±15.5 

Fig. 5 The Stress-strain diagram of polyamide lines failure tests 

The pre-stressing means the introducing of internal forces in the 

externally unloaded tensegrity structure and can be defined in different 

ways. It is often introduced by a lengthening or shortening of some 

members from their unstrained lengths. This method of pre-stressing is  

implemented here based on the analytical model presented in (Ref.5). 

To describe the self-stress state the pre-stress level
0p  is introduced 

which is defined as a normal elongation of the cross cables, i.e. as the 

strain 

0
0

N

N

s s
p

s

−
= (9) 

where 
0s  is the reference length of the cross cable after the initial pre-

strain and 
Ns  is its natural or rest length. 

It follows from (9) that the length of the cross cable is 

0 0(1 )Ns s p= + after introducing the pre-stress state of the level
0p . The 

other reference lengths, the side length of the horizontal triangles
0L and 

the bar length 
0b , as well as the related normal forces in the bars, cross-

cables and base cables can be calculated based on the analytical model 

form (Ref.5). These lengths can also be achieved iteratively while using 

the finite element method or they can be measured in situ. This last 

rough method of in situ measurements is used here in a preliminary 

analysis together with the calculated lengths from the analytical model.  

Rotations of the M20 nuts on each bar thread enable the pre-stressing by 

changing the distances between the bar ends. The change of the bar 

lengths causes the lengthening of the cables without changing the twist 

angle .  

Three pre-stress levels are discussed here (Tab. 4). The first level of pre-

stress (indexed 0 in Tab. 4) is assumed to be very close to the natural 

state, as the aim was to create as little internal forces as possible. 

However, the knowledge of the exact natural state is unknown. 

Assuming that one full rotation of the M20 nuts equals 2.5 [mm] of the 

change of the bar length, the other two levels (indexed 1 and 4) are 

known from the increase of the bar lengths in the following manner: 

level 1 – the length increase of 15 [mm] (six rotations) and level 4 – the 

length increase of 30 [mm] (twelve rotations)  – each rotations counting 

from the level 0.  

The differences between the calculated and measured dimensions are 

not greater than 0,8 [%] for the cross strings and 0,5 [%] for the base 

strings, which is an acceptable value due to the accuracy of in situ 

measurement techniques and node solutions. 

Table 4. Lengths of the simplex members [m] 

No 
0p

[%] 
Bars 

Base 

cables 

Cross 

cables 
Height 

*
M

ea
su

re
d

 l
en

g
th

s

0 0 0.9378 0.4872 0.7781 0.7643 

1 2.05 0.9528 
0.4902 

0.7940 
0.7804 

0.4914* 0.7845* 

4 4.10 0.9687 
0.4931 

0.8099 
0.7964 

0.4972* 0.7995* 

3.3. Vibration measurements 

Among three types of dynamic vibration tests: forced, ambient and 

combined, the forced vibration testing with the impact hammer was 

used here. This test method yields good results for relatively small 

mechanical devices tested in laboratory condition. It is assumed in this 

test that all forces that are applied to the structure are measured while 

ambient forces like wind or traffic loads can be excluded. However, the 

basis of an experimental determination of the vibration properties in 

dynamic vibration tests is a properly and accurately measured signal of 

accelerations, generally from few transducers, and an excitation force in 

the time domain. At the excitation, transducers send an analogous 

electrical signal in a form of a continuous function as an input. The 

signal is amplified by the amplifier. Next, the analyzer performs a 

digitization of the analogous signal into discrete series with utilization 

of the anti-aliasing filter. The time resolution (number of samples 

measured in time) is dependent on the sampling rate, while the 

resolution of the recorded magnitudes is dependent on the bit depth.  

A complete measuring system is usually composed of three elements: an 

excitation mechanism, a power amplifier, an analyzer and at least one 

transducer. The presented survey was conducted on the equipment 

available in the Institute of Building Engineering - the analyzer with 

dedicated software, the transducer and the blow hammer. The amplifier 

and the analyzer are often placed in a single device, as is the case of the 

utilized analyzer. The tests were performed using a data acquisition and 

recording system TEAC brand, model LX-110 (Fig. 6).  

Fig. 6. The acquisition and recording unit 
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It is a unit able to record voltage, sound, vibration and strains at a 

bandwidth of 40 [kHz]. The unit operates 32 channels simultaneously 

with the maximum number of 128 channels). Basic technical data is 

presented in Tab. 5. 

Table 5. Basic technical data of the unit 

Sampling frequency 

[kHz] 

Available Voltage 

[V] 

Maximum speed 

of recording  

[MB/s] 

Bandwidth 

[Bit] 

1.5/3/6/12/24/48/96 ±0.5/1/2/5/10/20/50 1.6 16/24 

The received electrical signal is amplified to the level visible by the 

analyzer. The process of measuring is controlled by dedicated software.  

The purpose of piezoelectric transducers is to generate electrical 

impulses due to the occurrence of a mechanical shock. The transducers 

used in the experiment are the typical triaxial accelerometers consisting 

of a seismic mass and piezoelectric crystals enclosed in a one body. 

Manufacturer parameters of  sensor are gathered in Tab. 6. 

Table 6. The PCB 356B18 transducer parameters 

Type of transducer accelerometer 
Resonant 

frequency 
≥10 [kHz] 

Sensitivity (±5%) 102 [mV/(m/s2)] Non-linearity ≤ 1 [%] 

Measurement range ±49 [m/s2 pk] 
Transverse 

sensitivity 
≤ 7 [%] 

Frequency range (±5%) 0.5 to 2000 [Hz] Self-weight 225 [g] 

Frequency range (±10%) 0.3 to 4000 [Hz] 
Screwing 

momentum 
3-7 [Nm] 

The impact hammer generates the impulse load and serves as an 

excitation mechanism in the test. The hammer is composed of a handle 

integrated with a striking head, which is a sensor working analogously 

to the accelerometer, although giving information on the force values. 

An additional mass and a set of hammer tips enables to adjust the 

stiffness of the hammer surface and its mass in order to induce the 

desired frequency component of the structure. The general rule is that 

the smaller the weight of the hammer and the greater the rigidity of the 

tip, the higher frequencies are excited. Characteristics of the hammer are 

gathered in Tab. 7.  

Table 7. The 086C03 impulse hammer parameters 

Sensitivity (±15%) 2.25 [mV/N] Non-linearity ≤ 1 [%] 

Range ±2224 [N pk] Hammer mass 160 [g] 

Resonance frequency ≥22 [kHz] Extender mass weight 73.7 [g] 

Three tri-axial acceleration sensors were mounted on each node of the 

upper triangle of the simplex structure, on the nodes no 4, 5 and 6 

(Fig.3). The sensors mass equals 25 [gm] and is insignificant with the 

mass of the 20 [mm] diameter steel bars. Fixing the bottom triangle 

during measurements to the floor, the simplex can be treated as the 

structure of nine degrees of freedom, three DOFs for each upper node. 

In accordance to the global coordinate system in Fig. 2, it was possible 

to measure in one setup accelerations of nine signals 4x, 4y, 4z, 5x, 5y, 

5z, 6x, 6y, 6z together with one force signal from the impulse hammer 

as a source of excitation. After a preliminary broadband test of 

determining the natural frequencies and modes shapes of the simplex, 

nine separate setups of detailed modal identification tests were carried 

out for each prestress level with excitation of different node and 

direction (Tab. 8).  

Table 8. Setups and applied impulse force for each pre-stress level 

Setup 1 2 3 4 5 6 7 8 9 

Excitation  4x 4y 4z 5x 5y 5z 6x 6y 6z 

In general, the modal analysis consists of (1) data collecting with 

processing gathered signals, (2) system identification and (3) modal 

characteristics estimation. The last step of extracting and validating a 

set of modal parameters can be determined from a free vibration 

analysis of the identified system model. The identified system model is 

a mathematical model estimated from measured data and can be 

parametric or nonparametric, in which case the system is described in 

tabulated form, for instance as numerical Frequency Response Function 

(FRF) data. The modal parameters can be determined from a modal 

decomposition of the identified system model. All these three steps of 

the modal analysis presented in the article are developed using the 

Macec program (Ref.13). It is a Matlab (Ref.14) toolbox that enables 

among others two classical experimental modal analysis approaches: the 

nonparametric FRF estimation and the deterministic poly-reference least 

squares complex frequency domain method (pLSCF). The second was 

utilized in the test and is characterized with a very clear stabilization 

diagrams given with small computational effort. The detailed 

information on the computational algorithm exceeds the volume of the 

article – for more guidance please refer to Refs 15-16. 

3.4. Signals processing and modal parameters 

The signals were recorded with a relatively high, for the test purposes, 

sampling frequency of 1500 [Hz]. The sampling frequency was chose to 

be as high to capture the short-time transient signals of the impact in 

full detail. On the other hand it is the lowest setup option for the 

possessed recorder. Each signal lasted approximately 15 seconds. The 

further processing of signals included the removal of the offset and the 

decimation by 10. This process enabled to obtain the maximum value of 

frequency equal to 75 [Hz] in accordance to the Nyquist frequency and 

aliasing phenomena. The summary of the modal characteristics based on 

the all recorded signals are shown in Tab. 9 for the pre-stress level one 

and four. Some other results are presented in figures below.  

Table 9. Predicted variation of natural frequencies [Hz] and damping 

ratios [%] 

Mode 1 2 3 4 5 

Pre-stress level 1 

f [Hz] 3.32 8.84 28.61 48.21 60.19 

ξ [%] 1.7 3.1 2.5 0.7 1.3 

Pre-stress level 4 

f [Hz] 4.12 9.67 30.85 47.14 60.04 

ξ [%] 1.1 2.3 1.5 0.4 1.4 

Figures 7 and 8 presents the results of the setup 1, for which the impulse 

is applied to the node 4 and in the direction X. From the nine signals 

recorded in this setup the signal 4x in the direction X is only presented 

here for the pre-stress level 1 (Fig. 7) and 4 (Fig 8). These signals are 

extracted from the direction X of the accelerometer in the node 4.    

Fig. 7 Setup 1, pre-stress level 1, signal 4x: (from top to bottom) square 

acceleration in time domain, power spectral density (PSD) of the 

acceleration and the acceleration in frequency domain 
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The increased pre-stress level, which is related to the increased stiffness 

of the simplex unit, caused the values of acceleration to rise as seen in 

Fig. 7 and 8 on the vertical axes. The first natural period of vibrations 

has decreased significantly after the pre-stressing of the simplex to the 

level four (Tab. 9). As one can see in the diagrams of the acceleration 

and the acceleration PSD of the first pre-stress level, a concentration of 

natural frequencies seems to occur around the value of 50 [Hz]. After 

the pre-stressing, the modes are more clearer and sharper, as if the 

dominant frequency would be excited, and the nearing ones were not. 

The tendency of increasing the natural frequencies is visible in the 

acceleration plot mainly for the first three modes, although it is not of 

great significance. This is due to the fact, that the stiffness of the cables 

are very small in relation to the stiffness of the bars. 

Fig. 8 Setup 1, pre-stress level 4, signal 4x: (from top to bottom) square 

acceleration in time domain, power spectral density (PSD) of the 

acceleration and the acceleration in frequency domain 

Figure 9 shows the additional PSD diagrams of the signals 4y and 4z for 

the setup 1 and the pre-stress level 1. These signals are extracted from 

the direction Y and Z of the accelerometer in the node 4.  

Fig. 9 Setup 1, pre-stress level 1, power spectral density (PSD) of signal 

4y (top ) and 4z ( bottom) 

Analysis of all three PSD signals 4x (Fig. 7), 4y and 4z (Fig. 9) shows 

that some of the natural frequencies and corresponding modes are more 

or less visible depending on the direction of the measured signal. The 

more natural frequencies and modes are induced, the better estimation 

of the modal parameters can be done. The modal parameters shown here 

in Tab. 9 are obtained based on the combining modal information from 

the nine different setups into one single mode. 

3.5. Eigenmodes and eigenfrequencies 

The first five identified natural frequencies and damping ratios for the 

pre-stress level 1 and 4 are shown in Tab. 9, while first five eigenmodes 

for the pre-stress level 4 are presented in Figs. 10 – 14. The first 

identified mode is a rotation of the upper triangle along the vertical axis 

of the simplex. 

Fig. 10 Pre-stress level 4, mode 1 (4.12 Hz). Rotation of the upper 

triangle along the Z axis  

Fig. 11 Pre-stress level 4, mode 2 (9.67 Hz). Rotation of the upper 

triangle along the Y axis  

Fig. 12 Pre-stress level 4,  mode 3 (30.85 Hz). Nodes of the upper 

triangle change distance between themselves with additional rotation 

along the Y axis 

Fig. 13 Pre-stress level 4,  mode 4 (47.14 Hz). Rotation of the upper 

triangle along the Y axis 
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Fig. 14 Pre-stress level 4,  mode 5 (60.04 Hz). Nodes of the upper 

triangle change distance between themselves with additional rotation 

along the Y axis 

The resonance spectrum of a tensegrity structure often includes very 

closely situated frequencies, which are resulting from a high degree of 

symmetry or repetitivity in the structure. Coinciding natural frequencies 

are an obstacle in measuring and analyzing the correct resonance. In this 

experiment third, fourth and fifth frequencies presented in Tab. 9 had a 

very closely related double eigenmode. Hence, the results of these 

frequencies were at some point a matter of arbitrary selection. On the 

other hand, it would be advantageous if the lowest natural frequency of 

the structure could be easily measured and filtered from the whole 

spectrum. In these tests, the first two natural frequencies were easily 

recognizable, which for the vibrational health monitoring purposes is 

commonly utilized and sufficient.  

4. SUMMARY AND CONCLUSIONS

The susceptibility of tensegrity structures to vibrations can be a prime 

design issue in their mechanics. It is also of growing importance 

because of the their slenderness and also of their dynamic loading. The 

experimental verification of design values, in particular modal 

parameters (eigenfrequencies, damping ratios, mode shapes, and modal 

scaling factors), can be essential for design and model validation of the 

tensegrity structure and for guaranteeing the their safety and 

serviceability. It can be also employed for quality control and structural 

health monitoring purposes. 

In the paper it was shown that the modal parameters of the simplex 

tensegrity prism may be determined experimentally in the form of the 

eigenfrequencies, eigenmodes and damping ratios. They can be also 

obtained via the finite element method and own program which is 

currently implemented by the authors. However, although the natural 

frequencies in tensegrity structures are important in the vibrational 

health monitoring, it is not always possible to use them as an indicator 

of the pre-stress level and hence as the indicator of the structure 

stiffness. In numerical simulations, the stiffness can be easy regulated 

and improved by changing the level of pre-stress. In practice, however, 

there are some difficulties and an experimental validation can be 

advantageous, especially if the natural frequencies of the structure are 

measured and filtered from the whole experimental vibration spectrum. 

The mechanical response of such structures can be complicated, in 

particular the dynamic response and behaviour in the self-stress states, 

which require a precise physical model enabling to estimate the pre-

stress values (experimental tests) and a more complex numerical models 

due to the determinant of the A matrix equal to zero and the necessity of 

building the additional tangent stiffness matrix. 

Another important conclusion is the fact, that an analysis of only one 

second of the acceleration in the time domain leads to a very rich 

portion of information. The data could be gathered in real time for the 

purposes of structural health monitoring.  
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